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SUMMARY: w,n*-Excitation of bis{2-methyl-1-propenyl)ether leads to products derived from a
vinyT-vinyloxy radical pair; photochemical decarbonylation (n,m*) of the title ketone provides
an entry into the diradical manifold of the oxydi-m-methane rearrangement.

While the oxadi-n-methane rearrangement of 8,y-enones leading to cyclopropyl ketones (Eg.1)
is abundantly documented1, formation of vinyl epoxides is not competitive on energy grounds.
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However, divinyl ethers could in principle serve as precursors to vinyl epoxides (Eq.1) via
the novel oxydi-m-methane rearrangement. No examples of the latter process appear to have been
reported. Consequently, the photolysis of the divinyl ether 1 was undertaken in search of this
unprecedented rearrangement. Analogous to the di-w-methane process, the oxiranyldicarbinyl
diradical 2 could intervene as intermediate (Eq.2), so that the photodecarbonylation of the
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epoxycyclopentanone 3 was examined as independent entry into the oxydi-m-methane rearrangement.

Photolysis of the divinyl ether } 2 in acetonitrile at 254 nm afforded the products shown
in Eq.3. The corresponding vinyl epoxide, expected product of the oxydi-m-methane rearrange-
ment, was not formed. Control experiments on an authentic sample confirmed that the vinyl
epoxide was stable unter the photolysis conditions and should have accummulated. By means of
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trapping, cross-over and CIDNP expem‘ments3 it was shown that these products were derived from
a vinyl-vinyloxy radical pair, formed by cleavage of the carbon-oxygen bond. Photoelectron
spectroscopy4 on divinyl ether 1 suggested that the lowest excitation is of the w,m*-type. In
this respect, the photochemistry of divinyl ethers resembles that of furans, for which it has
been shown5 that =,r*-excitation leads to carbon—oxygen bond cleavage to afford as initial
intermediate a vinyl-vinyloxy diradical. Consequently, divinyl ethers appear to be inappropriate

substrates for observing the oxydi-w-methane rearrangement.

The photochemistry of the epoxycyclopentanone 3 6 was more encouraging. At 300 nm in
pentane the quantum yield of substrate consumption was G-S = 0.29, affording the photoproducts
shown in Scheme I. The relative yields are given in parentheses, total product balance was
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ca. 90%, and identification was achieved by comparison of GC retention times and mass spectra
(GCMS) with the authentic substances.

On irradiation at 300 nm an n,r*-excited epoxycyclopentanone n,m*-3 is formed, which
affords initially the acyl-carbinyl diradical 4. Concerted chelotropic decarbonylation of cyclo-
penten-3-ones has been proposed in n,w*-exc1tat1on » but still lacks unambiguous experimental
nroof. Furthermore, such decarbonylation is questionable because n,n*-excited carbon monoxide
should result. For the specific case of the n,m*-3 > 4 transformation, a tritopic processs,
the diradical 4 can assume the D - and the D . configurations, of which the latter is energe-
tically favored. Direct correlat1on leads to the D -4 diradical, while avoided surface
crossing affords the D -4 diradical. For the 1atter facile decarbonylation (formation of
ground state carbon monox1de) produces the dicarbinyl diradical 2, which either fragments into
divinyl ether }| or into the 1,3-diradical 6. Cyclization of the latter leads to the vinyl
epoxide 7, the searched for oxydi-r-methane product, while a 1,2-hydrogen shift gives enone 8.
Transformations 6 + 7 + 8 are well documented for oxatrimethylenes.

For energy reasons the D0 ﬂ-4 diradical is not directly accessible on n,n*-excitation in
the case of unstrained cyc‘loa]kanones.10 However, for the n,n*-excited epoxycyclopentanone 3
o-cleavage with concurrent oxirane opening to the oxyl-acyl diradical D -5 appears energeti-
cally feasible. The D -5 diradical should be reluctant to decarbony]até because again an
n,m*-excited carbon monox1de would result. Instead,it is well Tigned up for fragmentation into
dimethylketene and 3-methyl-2-butenal.. Alternatively, cyclization of the diradical 5 5 generates
the labile B-lactone 9 11, which decarboxylates to the 2,5-dimethy1-2,4-hexadiene.

These preliminary results suggest that photoextrusion reactions of suitable substrates
can provide interesting opportunities to enter into novel heterodi-w-methane rearrangements.
In this way the postulated 1,3- and 1,4-diradicals, which are not directly accessible, can be
independently generated and their mechanistic behavior explored.
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